\input{../settings/settings} \usepackage{amsmath,amssymb} \usepackage{tikz} \usetikzlibrary{shapes,arrows} \begin{document} \klausur{GdI-GTI-B} {Prof. Dr. M. Mendler} {Sommersemester 2017} {90} {Wörterbuch Englisch-Deutsch\,/\,Deutsch-Englisch} \begin{enumerate} \item Consider the context-free grammar $G = (\{S, A, B\}, \{a, b\}, S, P)$ with production rules $P$ given as \begin{align*} S &\rightarrow AB \\ A &\rightarrow aAa~|~\Lambda \\ B &\rightarrow bbbB~|~\Lambda \end{align*} \begin{enumerate} \item Give a formal (or an informal but precise) definition of $L(G)$ that describes the general structure of the words which are produced by $G$. \item Show that $L(G)$ is a \emph{regular} language by constructing an adequate automaton $M$ such that $L(M) = L(G)$. \end{enumerate} (15 marks) \item Consider the language $L = \{0^i1^j2^k ~|~ i, j, k \geq 0 ~\textrm{and}~ k \geq 2i+j\}$. \begin{enumerate} \item Construct a \emph{pushdown automaton} (PDA) $M$ which accepts exactly the words of $L$. (15~marks) \item Use the \emph{Pumping Lemma for regular languages} to prove that $L$ is \emph{not} a \emph{regular} language. (15~marks) \end{enumerate} \item Remember the definition of $\mathcal{O}$: $$\mathcal{O}(f) =_{df} \{g \in \Omega ~|~ \exists c.\: \exists n_0.\: \forall n > n_0.\: g(n) \leq cf(n)\}$$ for $\Omega$ being the set of all functions with type $\mathbb{N} \rightarrow \mathbb{N}$, and $f \in \Omega$. Consider the function $f^\prime(n) =_{df} 12n^3 + 7n^2$. Use the definitions from above to show formally that $f^\prime\in\mathcal{O}(n^3)$. (10~marks) \item Answer both of the following questions: \begin{enumerate} \item Consider arbitrary languages $L_1$, $L_2$, and $L = L_1 \cap L_2$. Assume that $L_1$ and $L_2$ are both \emph{Turing-decidable.} Explain briefly why $L$ is then also \emph{Turing-decidable.} You do \emph{not} need to construct machines explicitly. \item Consider an arbitrary language $L$ and assume that $L$ is \emph{polytime acceptable.} Explain briefly why $L$ is then also \emph{polytime decidable.} You do \emph{not} need to construct machines explicitly. \end{enumerate} (15 marks) \newpage\item Let $M$ be the following single tape Turing machine with input alphabet $\Sigma = \{x, y\}$ and tape alphabet $\Gamma = \{x, y, \#, \Delta\}$: \begin{center} \input{SS17_GTI_Figure.pdf_tex} \end{center} $M$ uses the building block Turing machines introduced in the lectures and tutorials (where $a \in \Gamma$): \begin{itemize} \item left move $L$, right move $R$, halt $stop$, and print $a$; \item the searching machines $R_a$, $R_{\neg a}$, $L_a$, and $L_{\neg a}$; and \item the shifting machines $S_R$ and $S_L$. \end{itemize} Describe the behaviour of $M$ starting from an arbitrary initial tape configuration $\underline{\Delta}w\Delta\Delta\dots$, where $w \in \Sigma^*$. What does the final tape look like when $M$ halts and how does the result depend on $w$? In other words, what computation does $M$ perform? (20 marks) % \item{ % Hier könnte dein Bild stehen: % %\image{1}{Capture3.PNG}{DNS-Anfrage}{DNS-Anfrage} % } \end{enumerate} \end{document}