\input{../settings/settings} \usepackage{amsmath} \begin{document} \klausur{GdI-GTI-B Machines and Languages} {Prof. M. Mendler, Ph.D.} {Wintersemester 16/17} {90} {Wörterbuch (Englisch-Deutsch/Deutsch-Englisch)} \begin{enumerate} \item{ Consider the following non-deterministic automaton $M$ over input alphabet $\Sigma = \{a,b\}$: \image{0.6}{WS1617-GTI_Diagram_1.png}{NDA $M$}{NDA $M$} \begin{enumerate} \item Construct a \textbf{deterministic} automaton $M'$ that accepts the same language, i.e., such that $L(M') = L(M)$. \item Find a regular expression $r$ that represents the language of the automaton $M$ (and $M'$), i.e., so that $L(r) = L(M) = L(M')$. \end{enumerate} Make sure you \textbf{explain} how you obtained your answer in each of the sub-questions! } \item{ Consider the following pushdown automaton (PDA) $M$ over input alphabet $\Sigma = \{0,1\}$ and stack alphabet $\Gamma = \{0, \#\}$: \image{0.8}{WS1617-GTI_Diagram_2.png}{PDA $M$}{PDA $M$} Give a formal (or an informal but precise) description of the language $L(M) \subseteq \{0,1\}^*$ that is accepted by $M$ and \textbf{justify your answer} by referring to the operational behavior of $M$ as specified by the transition diagram given for $M$ above. } \item{ Consider the context-free grammar $G = (\{S, B\}, \{a,b\}, S, P)$ with production rules $P$ given as: \begin{align*} S \quad &\rightarrow \quad aSaB \; | \; aaB \\ B \quad &\rightarrow \quad bB \; | \; \Delta \end{align*} \begin{enumerate} \item The word $w = aaaabaabb$ is a word of the language $L_G = L(G)$ generated b grammar $G$. Draw a derivation tree (parse tree) for $w$ with respect to $G$. \item Construct a pushdown automaton $M_G$ that accepts the same language, ,i.e., for which $L(M_G) = L(G)$. \end{enumerate} } \item What is \textit{Cook's Theorem} and what is its significance in complexity theory? \end{enumerate} \end{document} %\image{1}{Capture3.PNG}{DNS-Anfrage}{DNS-Anfrage}