forked from klausuren/klausuren-allgemein
Add GdI-GTI-B WS16/17
This commit is contained in:
parent
b951d47800
commit
dad93acda8
60
GdI-GTI-B/WS1617 GTI.tex
Normal file
60
GdI-GTI-B/WS1617 GTI.tex
Normal file
@ -0,0 +1,60 @@
|
||||
\input{../settings/settings}
|
||||
|
||||
\usepackage{amsmath}
|
||||
|
||||
\begin{document}
|
||||
\klausur{GdI-GTI-B Machines and Languages}
|
||||
{Prof. M. Mendler, Ph.D.}
|
||||
{Wintersemester 16/17}
|
||||
{90}
|
||||
{Wörterbuch (Englisch-Deutsch/Deutsch-Englisch)}
|
||||
|
||||
\begin{enumerate}
|
||||
\item{
|
||||
Consider the following non-deterministic automaton $M$ over input alphabet
|
||||
$\Sigma = \{a,b\}$:
|
||||
\image{0.6}{WS1617-GTI_Diagram_1.png}{NDA $M$}{NDA $M$}
|
||||
\begin{enumerate}
|
||||
\item Construct a \textbf{deterministic} automaton $M'$ that accepts the
|
||||
same language, i.e., such that $L(M') = L(M)$.
|
||||
\item Find a regular expression $r$ that represents the language of the
|
||||
automaton $M$ (and $M'$), i.e., so that $L(r) = L(M) = L(M')$.
|
||||
\end{enumerate}
|
||||
|
||||
Make sure you \textbf{explain} how you obtained your answer in each of
|
||||
the sub-questions!
|
||||
}
|
||||
|
||||
\item{
|
||||
Consider the following pushdown automaton (PDA) $M$ over input alphabet
|
||||
$\Sigma = \{0,1\}$ and stack alphabet $\Gamma = \{0, \#\}$:
|
||||
\image{0.8}{WS1617-GTI_Diagram_2.png}{PDA $M$}{PDA $M$}
|
||||
|
||||
Give a formal (or an informal but precise) description of the language
|
||||
$L(M) \subseteq \{0,1\}^*$ that is accepted by $M$ and \textbf{justify
|
||||
your answer} by referring to the operational behavior of $M$ as
|
||||
specified by the transition diagram given for $M$ above.
|
||||
}
|
||||
|
||||
\item{
|
||||
Consider the context-free grammar $G = (\{S, B\}, \{a,b\}, S, P)$ with
|
||||
production rules $P$ given as:
|
||||
\begin{align*}
|
||||
S \quad &\rightarrow \quad aSaB \; | \; aaB \\
|
||||
B \quad &\rightarrow \quad bB \; | \; \Delta
|
||||
\end{align*}
|
||||
|
||||
\begin{enumerate}
|
||||
\item The word $w = aaaabaabb$ is a word of the language $L_G = L(G)$
|
||||
generated b grammar $G$. Draw a derivation tree (parse tree) for $w$
|
||||
with respect to $G$.
|
||||
\item Construct a pushdown automaton $M_G$ that accepts the same language,
|
||||
,i.e., for which $L(M_G) = L(G)$.
|
||||
\end{enumerate}
|
||||
}
|
||||
\item What is \textit{Cook's Theorem} and what is its significance in
|
||||
complexity theory?
|
||||
\end{enumerate}
|
||||
\end{document}
|
||||
|
||||
%\image{1}{Capture3.PNG}{DNS-Anfrage}{DNS-Anfrage}
|
||||
BIN
GdI-GTI-B/WS1617-GTI_Diagram_1.png
Normal file
BIN
GdI-GTI-B/WS1617-GTI_Diagram_1.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 346 KiB |
BIN
GdI-GTI-B/WS1617-GTI_Diagram_2.png
Normal file
BIN
GdI-GTI-B/WS1617-GTI_Diagram_2.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 226 KiB |
Loading…
x
Reference in New Issue
Block a user