Add KTR-MfI2-B exam from SS17

This commit is contained in:
Knoch 2018-05-29 11:03:36 +02:00
parent 51854491d7
commit a2e7f43515
3 changed files with 706 additions and 0 deletions

View File

@ -0,0 +1,300 @@
\input{../settings/settings}
% Mathematik
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{mathtools}
% Referenzen
\usepackage{hyperref}
\begin{document}
\klausur{KTR-MfI2-B Mathematik für Informatik 2)}
{Prof. Dr. U. Krieger}
{Sommersemester 17}
{90}
{Taschenrechner, zwei von Hand geschriebene DIN-A4-Seiten}
% Aufgabe 1
\section{Lineare Gleichungssysteme und Matlab/Octave (8 + 12 Punkte)}
\begin{enumerate}
% Aufgabe 1.1
\item \begin{enumerate}
\item Gegeben ist das folgende lineare Gleichungssystem:
\begin{align}
x_1 + x_3 = 1 \\
2x_1 + x_2 = 0 \\
4x_1 + 2x_2 + 4x_3 = 2
\end{align}
Geben Sie eine Darstellung in der Form eines Matrix-Vektor-Produkts $A \cdot x = b$ mithilfe einer geeigneten Koeffizientenmatrix $A$, des Vektors $x$ der Variablen sowie der rechten Seite $b$ des Gleichungssystems an.
% Aufgabe 1.1a
\item Berechnen Sie die Lösung $x = (\begin{array}{ccc}x_1 & x_2 & x_3\end{array}) \in \mathbb{R}^{3 \times 1}$. Wandeln Sie hierzu das System $(\begin{array}{cc}A & b\end{array})$ in Treppennormalform um und ermitteln Sie anschließend die Lösung mithilfe des Gaußschen Algorithmus.
% Aufgabe 1.1b
\item Ist das inhomogene lineare System $A \cdot x = b$ eindeutig lösbar? Begründen Sie.
\end{enumerate}
% Aufgabe 1.2
\item Wir betrachten den gerichteten Graphen $G = (V, E)$ des Google-Rangbildungsverfahrens. Dabei sei $V = \{ 1,2,3,4 \}$ die Menge der Knoten (Webseiten) und $E \subset V \times V$ die Menge der Kanten (Webseitenverknüpfungen durch Hyperlinks). Betrachten Sie hierzu Abbildung~\ref{fig:googlePagerank}.
$e^t = (1,1,1,1) \in \mathbb{R}^{1 \times 4}$ sei ein Zeilenvektor aus Einsen und $0_4 = (0,0,0,0)^t \in \mathbb{R}^{4 \times 1}$ sei ein Spaltenvektor aus Nullen.
$x = (x_1, x_2, x_3, x_4)^t \in \mathbb{R}^{4 \times 1}$ ist der Spaltenvektor des Rangwertes $x_i \in [0,1]$ der Seiten $i \in V$.
\begin{enumerate}
% Aufgabe 1.2a
\item Betrachten Sie den Graphen $G$ in Abbildung~\ref{fig:googlePagerank}. Geben Sie die stochastische Matrix $P \in \mathbb{R}^{4 \times 4}$ an, welche auf Basis der gewichteten Adjenzmatrix des Graphen $G$ bei der Berechnung des Google-Rangbildungsverfahrens verwendet wird.
\begin{figure}[h]
\centering
\includegraphics[width=4cm]{./img/google-pagerank.pdf}
\caption{Graph einer Google-Seitenrangbildung}
\label{fig:googlePagerank}
\end{figure}
% Aufgabe 1.2b
\item Geben Sie den Code eines Matlab/Octave-Programms an, mit dessen Hilfe diese soeben erzeugte Matrix $P$ dargestellt wird.
% Aufgabe 1.2c
\item Betrachten Sie das zum Rangbildungsverfahren gehörende lineare Gleichungssystem
\begin{equation}
A \cdot x = b
\label{eq:lgs}
\end{equation}
und geben Sie ein Codesegment an, das sowohl die Systemmatrix $A$ mit der folgenden $2 \times 1$-Blockmatrixstruktur
\begin{equation}
A = \left( \begin{array}{c} A_{11} \\ A_{21} \end{array} \right)
= \left( \begin{array}{c} I_4 - P^t \\ e^t \end{array} \right)
\in \mathbb{R}^{5 \times 4},
\end{equation}
als auch die rechte Seite
\begin{equation}
b = \left( \begin{array}{c} 0_4 \\ 1 \end{array} \right)
\in \mathbb{R}^{5 \times 1}
\end{equation}
von \eqref{eq:lgs} in Matlab/Octave-Syntax wiedergibt.
% Aufgabe 1.2d
\item Benennen Sie eine Matlab/Octave-Funktion, welche durch die Anwendung des Gaußalgorithmus die Treppennormalform der erweiterten Systemmatrix $(\begin{array}{cc}A & b\end{array})$ berechnet.
% Aufgabe 1.2e
\item Geben Sie einen Matlab/Octave-Funktionsanruf am, mit dem die Lösung $x \in \mathbb{R}^4$ des linearen Systems \eqref{eq:lgs} in Matlab/Octave berechnet werden kann.
\end{enumerate}
\end{enumerate}
% Aufgabe 2
\section{Vektorräume (5 + 7 + 8 Punkte)}
\begin{enumerate}
% Aufgabe 2.1
\item Betrachten Sie die Vektoren
\begin{equation}
a = \left( \begin{array}{c} 1 \\ 1 \\ 0 \end{array} \right),
b = \left( \begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right),
c = \left( \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right),
\end{equation}
des $\mathbb{F}_2$-Vektorraums $\mathbb{F}_2^3$ auf dem Körper der binären Elemente $\mathbb{F}_2 = \{0,1\}$. Dieser enthält die Operationen $\{\oplus, \odot\}$, definiert als
$\forall x,y \in \mathbb{F}_2.
x \oplus y = (x + y) ~\mathrm{mod}~2,
x \odot y = (x \cdot y)~\mathrm{mod}~2$.
Sind diese drei Vektoren $\{a, b, c\} \subset \mathbb{F}_2^3$ linear unabhängig oder linear abhängig? Begründen Sie Ihre Antwort durch geeignete algebraische Argumente.
% Aufgabe 2.2
\item Betrachten Sie die Monome $e_1(x) = 1$, $e_2(x) = x$ als Elemente des Vektorraums
\begin{equation}
V = \mathbb{Q}_2[x]
= \{p:\mathbb{Q} \rightarrow \mathbb{Q},
x \mapsto p(x) = b_0 + b_1x + b_2x^2~|~b_0, b_1, b_2 \in \mathbb{Q}\}
\end{equation}
der Polynome mit maximalem Grad 2 über dem Körper $\mathbb{K} = \mathbb{Q}$ der rationalen Zahlen. Als Grundoperation stehen in $V$ die punktweise Addition und die Skalarmultiplikation zur Verfügung:
\begin{align}
(p + q)(x) &= p(x) + q(x)
~&\mathrm{mit}~x \in \mathbb{Q}, p(x), q(x) \in V \\
(\lambda \cdot p)(x) &= (\lambda \cdot b_0) + (\lambda \cdot b_1)x + (\lambda \cdot b_2)x^2
~&\mathrm{mit}~x, \lambda \in \mathbb{Q}, p(x) \in V
\end{align}
\begin{enumerate}
% Aufgabe 2.2a
\item Sind die Polynome $v_1 = e_1(x)$ und $v_2 = e_2(x)$ linear abhängige oder linear unabhängige Elemente $v_1, v_2$ des $\mathbb{Q}$-Vektorraums $V = \mathbb{Q}_2[x]$? Begründen Sie Ihre Antwort durch algebraische Argumente.
%Aufgabe 2.2b
\item Geben Sie einen Untervektorraum $U_1 \subset V$ von $V$ der Dimension $1$ an.
\end{enumerate}
% Aufgabe 2.3
\item Weisen Sie durch eine geeignete algebraische Argumentation nach, dass die Menge
\begin{equation}
U = \{ v = \left( \begin{array}{c}
x \\
y \\
z
\end{array} \right) \in \mathbb{R}^3 ~|~ y - z = 0 \} \subset \mathbb{R}^3
\end{equation}
ein Untervektorraum des reellen Vektorraums $V = \mathbb{R}^3$ ist.
\end{enumerate}
% Aufgabe 3
\section{Lineare Abbildungen (6 + 6 + 4 + 4 Punkte)}
Betrachten Sie die lineare Abbildung
\begin{align}
f : V &\rightarrow W \\
v = \left( \begin{array}{c} x \\ y \\ z \end{array} \right) &\mapsto
f(v) = \left( \begin{array}{c} x \\ 2 \cdot (x + z) \\ 2 \cdot x + z \end{array} \right)
\end{align}
zwischen den $\mathbb{R}$-Vektorräumen $V = \mathbb{R}^3$ und $W = \mathbb{R}^3$.
\begin{enumerate}
% Aufgabe 3.1
\item Wählen Sie die kanonische Basis $\mathcal{B} = \{ e_1, e_2, e_3 \}$ im $\mathbb{R}$-Vektorraum $V = \mathbb{R}^3$ bzw. $W = \mathbb{R}^3$ aus und geben Sie die der Abbildung $f$ zugeordnete Matrix $A_f$ bzgl. dieser beiden Basen an.
% Aufgabe 3.2
\item Bestimmen Sie mithilfe einer geeigneten algebraischen Argumentation oder eines geeigneten Berechnungsverfahrens den Rang $rg(f)$ der Abbildung $f$.
% Aufgabe 3.3
\item Bestimmen Sie mithilfe einer geeigneten Formel, die Sie explizit angeben sollen, die Dimension $k = \mathrm{dim}(\mathrm{Ker}(f))$ des Kerns $\mathrm{Ker}(f)$ der Abbildung $f$.
% Aufgabe 3.4
\item Geben Sie eine Basis $\mathcal{C} = \{v_1,...,v_k\}$ des Kerns $\mathrm{Ker}(f)$ der Abbildung $f$ an.
\end{enumerate}
% Aufgabe 4
\section{Gruppentheorie und Matrizenalgebra (8 + 6 + 6 Punkte)}
\begin{enumerate}
% Aufgabe 4.1
\item Wir betrachten die Einheitengruppe $E(\mathbb{Z}) = \{1, -1\}$, die aus dem Monoid $(\mathbb{Z}, \cdot, 1)$ der ganzen Zahlen $\mathbb{Z}$ bei Verwendung der Multiplikation $\cdot$ als Grundoperation hervorgeht. Dann definiert die komponentenweise Multiplikation auf $(\mathbb{Z}, \cdot)$ in der Form
\begin{equation}
x \otimes y = (a, b) \otimes (c, d)
= (a \cdot c, b \cdot d)
~\mathrm{mit}~
x = (a, b),
y = (c, d) \in \mathbb{Z} \times \mathbb{Z}
\end{equation}
eine neue Multiplikationsoperation $\otimes$ auf dem Produktmonoid $(\mathbb{Z} \times \mathbb{Z}, \otimes, e)$ und
\begin{equation}
G = E(\mathbb{Z} \times \mathbb{Z})
= \{(1, 1), (1, -1), (-1, 1), (-1, -1)\}
\end{equation}
wird zur Einheitengruppe.
\begin{enumerate}
% Aufgabe 4.1.1
\item Ergänzen Sie die folgende Verknüpfungstabelle der Teilmenge $U = \{g_1, g_2\} = \{ (1, 1), (1, -1) \} \subset G$, die sich bei der Multiplikation $z_{i,j} = g_i \otimes g_j \in G = E(\mathbb{Z} \times \mathbb{Z})$ der Elemente $g_i, g_j, i, j \in \{1,2\}$ ergeben:
\begin{center}
\begin{tabular}{|c|c|c|} \hline
$\otimes$ & $g_1 = (1, 1)$ & $g_2 = (1, -1)$ \\ \hline
$g_1 = (1, 1)$ & & \\ \hline
$g_2 = (1, -1)$ & & \\ \hline
\end{tabular}
\end{center}
% Aufgabe 4.1.2
\item Wie lautet das inverse Element $g^{-1}_2$ zu $g_2 = (1, -1)$?
% Aufgabe 4.1.3
\item Um welche algebraische Teilstruktur der Gruppe $(G, \otimes)$ handelt es sich bei $(U, \otimes)$?
\end{enumerate}
% Aufgabe 4.2
\item Es sei $A = \left( \begin{array}{cc}
2 & 1 \\
3 & -10
\end{array} \right), B = \left( \begin{array}{ccc}
4 & 1 & 0 \\
5 & -2 & 1
\end{array} \right)$.
\begin{enumerate}
% Aufgabe 4.2.1
\item Berechnen Sie das Element $C_{12}$ der Produktmatrix $C = A \cdot B$.
% Aufgabe 4.2.2
\item Wie lautet die transponierte Matrix $B^t$ zu $B$?
\end{enumerate}
% Aufgabe 4.3
\item Es sei $A = \left( \begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array} \right)$.
Berechnen Sie die inverse Matrix $C = A^{-1}$ zu $A$.
\end{enumerate}
% Aufgabe 5
\section{Lineare Abbildungs- und Eigenwerttheorie (2 + 8 + 10 Punkte)}
\begin{enumerate}
% Aufgabe 5.1
\item Es seien feste Basen in den reellwertigen Vektorräumen $V = \mathbb{R}^k$ und $W = \mathbb{R}^m$ gewählt und
\begin{equation}
A_f = \left( \begin{array}{ccc}
2 & 4 & - 4 \\
-2 & -5 & 8 \\
3 & 6 & -18 \\
0 & 0 & 1
\end{array} \right)
\end{equation}
sei die der linearen Abbildung $f : V \rightarrow W$ zugeordnete Matrix. Geben Sie die Dimensionen $k, m \in \mathbb{N}_0$ der zugrunde liegenden Vektorräume $V$ und $W$ an.
% Aufgabe 5.2
\item Berechnen Sie die Determinanten der folgenden Matrizen:
\begin{equation}
A = \left( \begin{array}{ccc}
1 & 0 & 2 \\
0 & 6 & 0 \\
2 & 0 & 2
\end{array} \right),
B = \left( \begin{array}{ccc}
6 & 0 & 0 \\
5 & 4 & 0 \\
3 & 2 & 1
\end{array} \right)
\end{equation}
% Aufgabe 5.3
\item Bestimmen Sie das charakteristische Polynom
$p(\lambda) = \lambda^3 + p_2\lambda^2 + p_1\lambda + p_0$
der folgenden Matrix $A$ und berechnen Sie mit dessen Hilfe alle Eigenwerte
$\lambda_i, i \in \{1, 2, 3\}$ der Matrix.
\begin{equation}
A = \left( \begin{array}{ccc}
0 & 3 & 0 \\
4 & -1 & 0 \\
0 & 0 & 1
\end{array} \right)
\end{equation}
\end{enumerate}
\end{document}

View File

@ -0,0 +1,406 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- Created with Inkscape (http://www.inkscape.org/) -->
<svg
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:cc="http://creativecommons.org/ns#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns="http://www.w3.org/2000/svg"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
width="92mm"
height="113mm"
viewBox="0 0 92 113"
version="1.1"
id="svg8"
inkscape:version="0.92.3 (2405546, 2018-03-11)"
sodipodi:docname="google-pagerank.svg">
<defs
id="defs2">
<marker
inkscape:isstock="true"
style="overflow:visible"
id="marker7790"
refX="0"
refY="0"
orient="auto"
inkscape:stockid="Arrow1Mend">
<path
transform="matrix(-0.4,0,0,-0.4,-4,0)"
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1.00000003pt;stroke-opacity:1"
d="M 0,0 5,-5 -12.5,0 5,5 Z"
id="path7788"
inkscape:connector-curvature="0" />
</marker>
<marker
inkscape:isstock="true"
style="overflow:visible"
id="marker7746"
refX="0"
refY="0"
orient="auto"
inkscape:stockid="Arrow1Mend">
<path
transform="matrix(-0.4,0,0,-0.4,-4,0)"
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1.00000003pt;stroke-opacity:1"
d="M 0,0 5,-5 -12.5,0 5,5 Z"
id="path7744"
inkscape:connector-curvature="0" />
</marker>
<marker
inkscape:stockid="Arrow1Mend"
orient="auto"
refY="0"
refX="0"
id="marker7598"
style="overflow:visible"
inkscape:isstock="true"
inkscape:collect="always">
<path
id="path7596"
d="M 0,0 5,-5 -12.5,0 5,5 Z"
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1.00000003pt;stroke-opacity:1"
transform="matrix(-0.4,0,0,-0.4,-4,0)"
inkscape:connector-curvature="0" />
</marker>
<marker
inkscape:stockid="Arrow1Mend"
orient="auto"
refY="0"
refX="0"
id="marker7300"
style="overflow:visible"
inkscape:isstock="true">
<path
id="path7298"
d="M 0,0 5,-5 -12.5,0 5,5 Z"
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1.00000003pt;stroke-opacity:1"
transform="matrix(-0.4,0,0,-0.4,-4,0)"
inkscape:connector-curvature="0" />
</marker>
<marker
inkscape:stockid="Arrow1Mend"
orient="auto"
refY="0"
refX="0"
id="marker6830"
style="overflow:visible"
inkscape:isstock="true"
inkscape:collect="always">
<path
id="path6828"
d="M 0,0 5,-5 -12.5,0 5,5 Z"
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1.00000003pt;stroke-opacity:1"
transform="matrix(-0.4,0,0,-0.4,-4,0)"
inkscape:connector-curvature="0" />
</marker>
<marker
inkscape:isstock="true"
style="overflow:visible"
id="marker6718"
refX="0"
refY="0"
orient="auto"
inkscape:stockid="Arrow1Mend"
inkscape:collect="always">
<path
transform="matrix(-0.4,0,0,-0.4,-4,0)"
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1.00000003pt;stroke-opacity:1"
d="M 0,0 5,-5 -12.5,0 5,5 Z"
id="path6716"
inkscape:connector-curvature="0" />
</marker>
<marker
inkscape:isstock="true"
style="overflow:visible"
id="marker6608"
refX="0"
refY="0"
orient="auto"
inkscape:stockid="Arrow1Mend"
inkscape:collect="always">
<path
transform="matrix(-0.4,0,0,-0.4,-4,0)"
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1.00000003pt;stroke-opacity:1"
d="M 0,0 5,-5 -12.5,0 5,5 Z"
id="path6606"
inkscape:connector-curvature="0" />
</marker>
<marker
inkscape:stockid="Arrow1Mend"
orient="auto"
refY="0"
refX="0"
id="marker6458"
style="overflow:visible"
inkscape:isstock="true"
inkscape:collect="always">
<path
id="path6456"
d="M 0,0 5,-5 -12.5,0 5,5 Z"
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1.00000003pt;stroke-opacity:1"
transform="matrix(-0.4,0,0,-0.4,-4,0)"
inkscape:connector-curvature="0" />
</marker>
<marker
inkscape:isstock="true"
style="overflow:visible"
id="marker6422"
refX="0"
refY="0"
orient="auto"
inkscape:stockid="Arrow1Mend"
inkscape:collect="always">
<path
transform="matrix(-0.4,0,0,-0.4,-4,0)"
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1.00000003pt;stroke-opacity:1"
d="M 0,0 5,-5 -12.5,0 5,5 Z"
id="path6420"
inkscape:connector-curvature="0" />
</marker>
<marker
inkscape:stockid="Arrow1Mend"
orient="auto"
refY="0"
refX="0"
id="Arrow1Mend"
style="overflow:visible"
inkscape:isstock="true"
inkscape:collect="always">
<path
id="path6071"
d="M 0,0 5,-5 -12.5,0 5,5 Z"
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1.00000003pt;stroke-opacity:1"
transform="matrix(-0.4,0,0,-0.4,-4,0)"
inkscape:connector-curvature="0" />
</marker>
<marker
inkscape:stockid="Arrow2Lend"
orient="auto"
refY="0"
refX="0"
id="Arrow2Lend"
style="overflow:visible"
inkscape:isstock="true">
<path
id="path6083"
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.625;stroke-linejoin:round;stroke-opacity:1"
d="M 8.7185878,4.0337352 -2.2072895,0.01601326 8.7185884,-4.0017078 c -1.7454984,2.3720609 -1.7354408,5.6174519 -6e-7,8.035443 z"
transform="matrix(-1.1,0,0,-1.1,-1.1,0)"
inkscape:connector-curvature="0" />
</marker>
</defs>
<sodipodi:namedview
id="base"
pagecolor="#ffffff"
bordercolor="#666666"
borderopacity="1.0"
inkscape:pageopacity="0.0"
inkscape:pageshadow="2"
inkscape:zoom="1"
inkscape:cx="354.71385"
inkscape:cy="220.95388"
inkscape:document-units="mm"
inkscape:current-layer="layer1"
showgrid="false"
showguides="true"
inkscape:guide-bbox="true"
inkscape:window-width="1920"
inkscape:window-height="1001"
inkscape:window-x="-9"
inkscape:window-y="-9"
inkscape:window-maximized="1">
<inkscape:grid
type="xygrid"
id="grid5969" />
</sodipodi:namedview>
<metadata
id="metadata5">
<rdf:RDF>
<cc:Work
rdf:about="">
<dc:format>image/svg+xml</dc:format>
<dc:type
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
<dc:title></dc:title>
</cc:Work>
</rdf:RDF>
</metadata>
<g
inkscape:label="Ebene 1"
inkscape:groupmode="layer"
id="layer1"
transform="translate(0,-184)">
<text
xml:space="preserve"
style="font-style:normal;font-weight:normal;font-size:10.58333302px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
x="74.083336"
y="28.447918"
id="text5981"><tspan
sodipodi:role="line"
id="tspan5979"
x="74.083336"
y="37.811687"
style="stroke-width:0.26458332" /></text>
<text
xml:space="preserve"
style="font-style:normal;font-weight:normal;font-size:10.58333302px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
x="125.94167"
y="80.173958"
id="text6058"><tspan
sodipodi:role="line"
id="tspan6056"
x="125.94167"
y="89.537727"
style="stroke-width:0.26458332" /></text>
<g
id="g8476"
transform="translate(-31.895832,181.12083)">
<rect
style="fill:none;fill-opacity:1;stroke:#000000;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
y="4.6354165"
x="34.395832"
height="41.010414"
width="30.417028"
id="rect3713-0" />
<flowRoot
transform="matrix(0.50000694,0,0,0.50000694,-47.975132,-17.433209)"
style="font-style:normal;font-weight:normal;font-size:40px;line-height:1.25;font-family:sans-serif;text-align:center;letter-spacing:0px;word-spacing:0px;text-anchor:middle;fill:#000000;fill-opacity:1;stroke:none"
id="flowRoot5971"
xml:space="preserve"><flowRegion
style="text-align:center;text-anchor:middle"
id="flowRegion5973"><rect
style="text-align:center;text-anchor:middle"
y="62.519684"
x="175"
height="50.000004"
width="40.000004"
id="rect5975" /></flowRegion><flowPara
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-family:'Cambria Math';-inkscape-font-specification:'Cambria Math';text-align:center;text-anchor:middle"
id="flowPara5977">1</flowPara></flowRoot> <rect
id="rect6026"
width="30.417028"
height="41.010414"
x="91.829216"
y="4.6354165"
style="fill:none;fill-opacity:1;stroke:#000000;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1" />
<flowRoot
xml:space="preserve"
id="flowRoot6034"
style="font-style:normal;font-weight:normal;font-size:40px;line-height:1.25;font-family:sans-serif;text-align:center;letter-spacing:0px;word-spacing:0px;text-anchor:middle;fill:#000000;fill-opacity:1;stroke:none"
transform="matrix(0.50000694,0,0,0.50000694,9.4582643,-17.433209)"><flowRegion
id="flowRegion6030"
style="text-align:center;text-anchor:middle"><rect
id="rect6028"
width="40.000004"
height="50.000004"
x="175"
y="62.519684"
style="text-align:center;text-anchor:middle" /></flowRegion><flowPara
id="flowPara6032"
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-family:'Cambria Math';-inkscape-font-specification:'Cambria Math';text-align:center;text-anchor:middle">3</flowPara></flowRoot> <rect
id="rect6036"
width="30.417028"
height="41.010414"
x="34.395832"
y="72.368752"
style="fill:none;fill-opacity:1;stroke:#000000;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1" />
<flowRoot
xml:space="preserve"
id="flowRoot6044"
style="font-style:normal;font-weight:normal;font-size:40px;line-height:1.25;font-family:sans-serif;text-align:center;letter-spacing:0px;word-spacing:0px;text-anchor:middle;fill:#000000;fill-opacity:1;stroke:none"
transform="matrix(0.50000694,0,0,0.50000694,-47.975132,50.300132)"><flowRegion
id="flowRegion6040"
style="text-align:center;text-anchor:middle"><rect
id="rect6038"
width="40.000004"
height="50.000004"
x="175"
y="62.519684"
style="text-align:center;text-anchor:middle" /></flowRegion><flowPara
id="flowPara6042"
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-family:'Cambria Math';-inkscape-font-specification:'Cambria Math';text-align:center;text-anchor:middle">2</flowPara></flowRoot> <rect
style="fill:none;fill-opacity:1;stroke:#000000;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
y="72.368752"
x="91.829216"
height="41.010414"
width="30.417028"
id="rect6046" />
<flowRoot
transform="matrix(0.50000694,0,0,0.50000694,9.4582643,50.300132)"
style="font-style:normal;font-weight:normal;font-size:40px;line-height:1.25;font-family:sans-serif;text-align:center;letter-spacing:0px;word-spacing:0px;text-anchor:middle;fill:#000000;fill-opacity:1;stroke:none"
id="flowRoot6054"
xml:space="preserve"><flowRegion
style="text-align:center;text-anchor:middle"
id="flowRegion6050"><rect
style="text-align:center;text-anchor:middle"
y="62.519684"
x="175"
height="50.000004"
width="40.000004"
id="rect6048" /></flowRegion><flowPara
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-family:'Cambria Math';-inkscape-font-specification:'Cambria Math';text-align:center;text-anchor:middle"
id="flowPara6052">4</flowPara></flowRoot> <path
sodipodi:nodetypes="cc"
inkscape:connector-curvature="0"
id="path6060"
d="M 49.080208,45.381248 V 70.384373"
style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#Arrow1Mend)" />
<path
style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#marker6422)"
d="M 49.080208,45.381248 V 70.384373"
id="path6418"
inkscape:connector-curvature="0"
sodipodi:nodetypes="cc" />
<path
sodipodi:nodetypes="cc"
inkscape:connector-curvature="0"
id="path6454"
d="M 103.33861,45.381248 V 70.384373"
style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#marker6458)" />
<path
style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#marker6830)"
d="M 110.74696,72.884221 V 47.881096"
id="path6604"
inkscape:connector-curvature="0"
sodipodi:nodetypes="cc" />
<path
style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#marker6718)"
d="M 92.200453,90.088976 H 67.19733"
id="path6712"
inkscape:connector-curvature="0"
sodipodi:nodetypes="cc" />
<path
sodipodi:nodetypes="cc"
inkscape:connector-curvature="0"
id="path6714"
d="M 64.697482,97.497326 H 89.700603"
style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#marker6608)" />
<path
sodipodi:nodetypes="cc"
inkscape:connector-curvature="0"
id="path7294"
d="M 92.200453,21.414682 H 67.19733"
style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#marker7300)" />
<path
style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#marker7598)"
d="M 64.697482,28.823032 H 89.700603"
id="path7296"
inkscape:connector-curvature="0"
sodipodi:nodetypes="cc" />
<path
sodipodi:nodetypes="cc"
inkscape:connector-curvature="0"
id="path7666"
d="M 64.697482,28.823032 H 89.700603"
style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#marker7746)" />
<path
sodipodi:nodetypes="cc"
inkscape:connector-curvature="0"
id="path7786"
d="M 91.696888,72.884221 65.888618,46.768364"
style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#marker7790)" />
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 16 KiB